

CIPCs Validation Rest API

Instruction Manual for Validation Service

Contents

Revisions Table ... 3

Introduction of Validator Rest API .. 3

How to Call Validator Rest API .. 3

Reading response from REST API ... 5

2 | P

a g e

3 | P

a g e

Revisions Table

Author Version Date Comments

Ashish Singhvi V0.1 01/03/2018 First Draft

Hennie Viljoen V0.2 06/03/2018 Cosmetic Changes

Hennie Viljoen V0.3 06/03/2018 Corrected Grammar

Mistakes

Onke Mzondo V0.4 17/12/2024 Updated arguments –

Included

‘Ext_Enumeration’

on the arguments

Introduction of Validator Rest API

The CIPC iXBRL validator is deployed as a Rest API which can be accessed on the internet.

Consumer needs to call the said API and display the output in their preferred format. The validator

validates the iXBRL document and returns the output in csv files. Consumption platform has to

read the csv files and display the result in desired format.

Please note: this manual is subject to change since it is releases as part of the Pilot Testing Phase,

and issues may be identified during testing. The purpose of the Validation Service is to assist

Software Service Providers who didn’t incorporate sophisticated validation engines into their own

XBRL client-side software.

How to Call Validator Rest API

URL https://validation.cipc.co.za/bushchat-api/ws1000/ws1001

Method POST

Data

Parameters

relativeSource

file name of iXBRL document (.xhtml)

arguments

-sp IXBRL,XBRL,Dimension,Formula,Ext_Enumeration –X

input

zip file name which contains the .xhtml file to be validated

Example: relativeSource :
sampledoc.xhtml

https://validation.cipc.co.za/bushchat-api/ws1000/ws1001
https://validation.cipc.co.za/bushchat-api/ws1000/ws1001
https://validation.cipc.co.za/bushchat-api/ws1000/ws1001
https://validation.cipc.co.za/bushchat-api/ws1000/ws1001

4 | P

a g e

arguments : -sp

IXBRL,XBRL,Dimension,Formula,Ext_Enumeration –X

input : sampledoc.zip

JavaScript

JQuery AJAX

sample example

var form = new FormData();

form.append("relativeSource", " sampledoc.xhtml");

form.append("arguments", "-sp
IXBRL,XBRL,Dimension,Formula,Ext_Enumeration -X");
form.append("input", " sampledoc.zip");

var settings = {

 "async": true,

 "crossDomain": true,

 "url": "https://validation.cipc.co.za/bushchat-api/ws1000/ws1001",
"method": "POST",
 "headers": {

 "cache-control": "no-cache",

 "postman-token": "1c3276ea-a939-7b3a-ee71-b6cfd2d3b1f7"

 },

 "processData": false,

 "contentType": false,

 "mimeType": "multipart/form-data",

 "data": form

}

$.ajax(settings).done(function (response) { console.log(response);
});

5 | P

a g e

Success

Response

IsSuccessStatusCode : true , if call succeed

Content: returns stream as output which contains the set of csv files.
Consumer needs to read the below set of csv files,

FORMULAout.csv

FORMULAout.csv

IXBRL.csv

IXBRL.csv

ixbrl_schema.csv

IXBRL.csv

SCHEMA.csv

SCHEMA.csv

XBRL.csv

XBRL.csv

EXT_ENUMERATION.csv

EXT_ENUMERATION.csv

Reading response from REST API

There are mainly 5 different types of csv files generated from validator API. Consumer has to read

each file in order to verify if the file has errors / warnings. CIPC portal allows files which have

warnings. If there are any errors found in any of these output files, CIPC submission portal will

reject the same. There are two different structures as defined in output files. All output files have

results in a formula format.

➢ Structure 1: for IXBRL, IXBRL Schema, Schema and XBRL.

ERROR_CODE ERROR_TYPE LINE

NUMBER

COLUMN

NUMBER

FILE PATH ERROR

MESSAGE

Where,

• ERROR_CODE: This is a unique code used to identify an error.

• ERROR TYPE: The error type is either “E” or “W”. “E” stands for “Error” & “W” stands

for “Warning”. If the error type appears as “E” then this means an error is found and to

clear validation one needs to solve such error. If the error type is “W” then the same

can be either solved or can be ignored.

6 | P

a g e

• LINE NUMBER: This will show the line number where the error or warning is present in

the document.

• COLUMN NUMBER: This will take you to the exact location in a line where the error or

warning is situated.

• FILE PATH: This shows the location of the file for which error is shown.

• ERROR MESSAGE: This is the detailed description of the error along with references to

the specifications.

• E.g.: -1##E##1##4440##default_output.xbrl##cvc-id.2: There are multiple occurrences

of ID value 'idfactxxx'.

➢ Structure 2: for FORMULA

Formula output is divided into three sub category – Header, Error & Footer.

1. HEADER: For each assertion, header and footer will be displayed. Header contains the

following:

Type of

formula

ID of formula Label of

formula

Expression for

formula

Type of

severity

File path

Where,

• Type of formula – There are two type of formula assertions used in the taxonomy -

Value Assertion or Existence Assertion

• ID of formula – Every formula is holding a unique ID.

• Label of formula – Each formula has been assigned a unique label which includes a

number. This column displays that label.

• Expression for formula – The exact formula expression is explained here.

• Type of severity (Error or Warning) – This displays the severity of the business rule result

- ERROR or WARNING. Warnings can be ignored.

• File Path – The path of XML file containing the assertion.

• E.g. - Header##Value Assertion##ec_23##valueAssertion_41##Expression Text xxx##

##ERROR##Filename

2. ERROR: The formula error shows result in the following manner:

Pre-condition Formula Result Business rule

description

Variable

Where,

7 | P

a g e

• Pre-condition - It will check if any pre condition is required to run such formula.

Precondition are True, False or NA (if not present). Currently, there is no pre condition

requirement for CIPC formula linkbase. It will always be NA.

• Formula Result - The formula result explained whether the result is correct or incorrect.

If it is defined as “True” then this means that the formula is executed properly and there

is no error. If the result is “False” then this means that the value is not correct and

correction is required to change this label from False to True.

• Business rule description - Formula result is followed by the business rule description.

• Variable - Value for each variable is defined as per the formula linkbase format to

understand the formula error. Variables are already structured in the formula linkbase.

• E.g. - NA##FALSE##"emperor: The value of ""Declaration of director's report presence""

MUST be reported for the current reporting

period."##"v2[DateOfEndOfReportingPeriod2013;D2017;;;;2017-12-31]"##"v1"

3. FOOTER: For each assertion, the footer will display the count of TRUE, FALSE and NOT

EVALUATED result. So, each footer will contain 3 values in this order – TRUE results count,

FALSE results count, and NOT EVALUATED results count.

E.g. Footer##0##2##0## which will result into this expression -

Footer##True##False##Not Evaluated ## (This means there are 2 count for False values)

Please Note: Sample result files for each type of errors, please refer here.

